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ABSTRACT 

The objective of this study was to update the design manual and procedures 

currently used by the Nebraska Department of R.oads (NDOR) Roadway Design Division 

and to provide consistent design procedures for the Roadway Design and Bridge 

Divisions to follow. To accomplish these objectives, four tasks were set forth. First, 

review the current design procedures in the Roadway Design Division and the Bridge 

Division to gain an in-depth understanding of the procedures each division uses. Next, 

review the American Association of State Highway Transportation Officials (AASHTO) 

drainage manuals, which provide guidelines for an agency to follow in developing a 

design manual. Third, update regional regression equations for the State (of Nebraska. 

Finally, prepare the results of this study, as well as the results of two previous studies, 

for incorporation into the new design manual. 

The biggest concern with the current design procedures used at NDOR is the 

difference in methods used by the Roadway Design Division (culverts) and the Bridge 

Division (bridges). The distinction between a bridge and a culvert is purely a structural 

one: a span of 20 feet or less defines a culvert., and a span of more than 20 feet defines 

a bridge. It is conceivable that one division might determine that a bridge was required 

in a location that the other division found appropriate for a culvert. For this reason, a 

consistent design procedure is needed for both divisions. 

The United States Geological Survey (IJSGS) regression equations for Nebraska 

were updated in order to achieve this goal. The original USGS study was completed in 

1976, using stream flow data collected through 1972. By using the 19 additional years 

of data now available to update peak flow predictions obtained by Log Peairson Type I11 

estimation, new, more accurate regression equations were developed. These equations 

can be used by both divisions for more consktent design procedure and ielimination of 

possibile conflicts. 
I 
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DISCLAIMER 

The contents of this report reflect the views of the authors who are responsible 

for the opinions, findings, and conclusions presented. The contents do not necessarily 

reflect the official views or policies of the Nebraska Department of Roads. This report 

does not constitute a standard, specification or regulation. 
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Chapter 1 

INTRODUCTION 

BACKGROUND 

Virtually all hydraulic and hydrologic designs require an estimation of peak discharge. 

Hydraulic structure design is based on a certain return period flow. Return period flow 

refers to the frequency of a flow of a given magnitude. A 50-year flood, for example, has 

a two percent chance of occurring in any given year. Culverts and bridges must adequately 

pass the peak discharge to avoid flooding or failure of the structure. Accurate prediction of 

return period flows enables the: designers to prescribe the most economical structure 

consistent with public safety. 

The Nebraska Department of Roads (NDOR) determines design jurisdiction using the 

length of span over the waterway as the criterion. A span of 20 feet or less is considered 

a culvert, and is assigned to the NDOR Roadway Design Division. A span greater than 20 

feet is considered a bridge and is designed by the NDOR Bridge Division. The Bridge 

Division and the Roadway Design Division use different methods to estimate peak 

discharges, which may result in discrepancies between their discharge calculations. 

OaTECTIVES 

The design manual presently used by the NDOR Roadway Design Division does not 

reflect the most current design procedures. One objective of this study was to update the 

manual to include discharge estimation methods not formerly available, and to clarify 

methods already included in the current manual. This project is the third and final in a 

series of studies to be completed for NDOR. The first study was completed by Riley in 

1988, and the second was completed by McCallum in 1992. This study was to incorporate 

the results of the previous studies, as well as those of the present research, into 

recommendations for the new design manual. 

This study also investigated inconsistencies in design procedures between NDOR 

Divisions. The objective of this part of the study was to recommend a single, uniform 

design procedure for both the Roadway Design Division and the Bridge Division. The scope 

1 



9f this study was to update NDOR hydrologic design methods. None of the NDOR 

hydraulic design procedures were updated. Thus, methods used to determine the peak 

discharge may be changed, but methods for sizing the structure based on the new peak 

discharge results will remain the same. 

METHODS 

To review the current design methods used in both the Roadway Design and Bridge 

Divisions, the author spent a week in each division getting hands-on experience. He worked 

with several engineers in the Roadway Design Division whose techniques were slightly 

different, and used actual designs and site data to familiarize himself with NDOR practices. 

This allowed him to compare his results with those of the NDOR engineers. 

The author also reviewed the American Association of State Highway and Transportation 

Officials drainage manuals (AASHTO, 1991). These manuals give guidelines for 

development of a drainage design manual. The new edition of the NDOR design manual will 

be based upon these manuals. 

The United States Geological Survey regression equations for the State of Nebraska 

(Beckman, 1976) were brought up to date, using gage records obtained since publication of 

the original equations, and new, standardized techniques for regional regression equation 

development. One of these techniques involved computing a regional iso-line skew map for 

Nebraska. This map was used to assign weighted skew values to each station, which were 

then used in the Log Pearson Type 111 discharge estimation process. 

The procedures, results and recommendations of this research are documented in this 

report. A brief literature review is conducted in Chapter 2, concerned mainly with methods 

of estimating flood frequencies. Chapter 3 summarizes the results of the two earlier studies 

by Riley (1988) and McCallum (1992). Chapter 4 reviews the current NDOR design 

procedures in both the Roadway Design and Bridge Divisions. Chapter 5 describes the 

procedures used to update the Log Pearson Type I11 analysis and the regression equations, 

and presents the results of those efforts. Current and proposed methods are compared in 

Chapter 6, and conclusions and recommendations of this study are given in Chapter 7 .  

I 
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Chapter 2 

LITERATURE REVIEW 

This chapter presents a revie,w of literature that is pertinent to the scope of this project. 

The first section is a review of the American Association of State Highway and 

Transportation Officials (AASHTO) model drainage design manual. The second section 

reviews statistical methods used in hydrologic analysis. The third section details the 

development of regional flow frequency equations. The final section is a review of some 

previously developed regression equations. 

AASHTO DRAINAGE MANUAL 

The purpose of the AASHTO drainage manual is to provide a guideline for user agencies 

to develop their own design manuals. The manual is written in a generic manner, so that 

the user agency needs only to add its specific policies. The manual provides information on 

general practices, and gives ideas about what the user agency needs to include as far as 

policies and procedures. Every aspect of the drainage design process is included in this 

manual. Since the scope of this project is limited to hydrologic analysis, only chapters 

pertaining to this will be reviewed in depth. 

Hydrology 

This section of the AASHTO manual reviews design policies, methods, and descriptions 

of common procedures, and so is the most important section for the purposes of this project. 

It makes several suggestions initially which relate to previous chapters. These include 

suggestions about data collection and documentation. The need for cooperation between the 

designing agency and other agencies interested or involved in the project is also stressed, to 

help eliminate costs and save time. The manual describes eight possible methods for 

estimating peak discharge: 

1. Rational Method 

2. Watershed regression equations 

3.  Channel geometry regression equations 

4. Log Pearson type I11 analysis 

3 



5 I Hydrographs 

6. SCS and other unit hydrograph methods 

7. Computer programs (HEC-1, TR-20, TR-55, etc.) 

8. FEMA flood insurance studies (100-year discharges) 

Each of the above methods is described in detail in the manual, along with example 

problems for each method that show exactly how to determine the parameters and apply them 

correctly. McCallum (1992) also presents a good discussion of the Rational Method. The 

watershed regression equations and the Log Pearson Type I11 method are described in detail 

later in this chapter. 

The selection of design flood recurrence interval should be based on several factors. 

These factors include traffic flow, potential flood hazard, cost of project, and political 

considerations. Flood frequencies other than the design flood should also be analyzed to 

make sure that no unexpected hazards or losses occur. 

This chapter also presents a discussion of model calibration for use with computer 

programs. Calibration involves varying the parameters of a model to match actual stream 

flow hydrograph measurements. Calibration improves the accuracy of peak flow estimates. 

Culverts 

AASHTO gives the following definition for a culvert: "A culvert is a structure 20 

feet or less in centerline length between the extreme ends of openings for multiple boxes, 

usually covered with embankment and composed of structural material around the entire 

perimeter, which is usually designed hydraulically to take advantage of submergence to 

increase hydraulic capacity [for conveying] surface runoff through the embankment. " 

The manual makes four policy suggestions regarding culverts: 

1. The overtopping flood shall be consistent with the class of highway 

and the risk involved. 

2. Culvert location in both plan and profile shall be investigated to avoid 

sediment build-up in the barrel. 
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3. Material selection shall include consideration of service life which 

includes abrasion and corrosion. 

4. Culverts shall be designed to accommodate debris or proper access 

for debris maintenance. 

The manual also lists design criteria, including site characteristics, design limitations, 

design features, and related designs. Some factors that affect these criteria are topography, 

climate, soil types, allowable headwater, velocities, storage, and development around the 

project area. 

Flood return periods for design are recommended as follows for various classes of 

roads: 

FEMA mapped floodplain 

Interstate 

Primary highway 

Secondary highway 

Local highway 

100-year 

50-year 

25-year 

10-year 

5-year 

Minimum culvert sizes recommended for various classes of roads are listed: 

Interstate system 

Other systems 

Side drains or drives 

24 inches 

18 inches 

12 inches 

The remainder of the AASHTO chapter on culverts discusses hydraulic design, and 

includes discharge equations for different types of control at the culvert. Since this project 

is concerned with hydrology and not hydraulics, these items will not be reviewed. 

Bridges 

This chapter gives policy iind design guidelines for bridges, which are defined as any 

StruchJre spanning more than 20 feet. AASHTO states that the design flood should be based 

on risk assessment of local conditions, including traffic patterns, environmental 

consequences, potential property damage, and flood plain management criteria. The design 

flood will then be used to evaluate hydraulic effects such as backwater elevations, velocities, 

5 



and scour. The minimum design flood should be based upon roadway overtopping. A 

" superflood" should also be analyzed to ensure no unforeseen damage is incurred. 

The above stated criteria are the only hydrologic aspects of bridge design mentioned. 

The remainder of the design process is based on hydraulic analysis, and therefore will not 

be discussed. Additional chapters in the AASHTO manual cover items outside the scope of 

this study, including energy dissipators, storage facilities, storm drain systems, pump 

stations, surface water environmental aspects, erosion and sediment control, bank protection, 

coastal zone situations, construction, maintenance of drainage facilities, and restoration. 

METHODS FOR ESTIMATING FLOOD FLOW FREQUENCY 

Methods used to evaluate and analyze flood events have changed greatly. When the 

earliest attempts were made to analyze flood discharges, very little discharge data were 

available ~ Consequently, only simple, generalized formulas were possible. As more 

discharge data became available, the methods grew in both complexity and accuracy. A 

brief history of the evolution of these methods (Benson, 1962) is presented here. 

The earliest methods were empirical formulas, and provided only an estimate of the 

probable maximum flood. These equations typically take the form: 

where : 

Q=CA 

Q=flood flow 

C =a  coefficient related to the region 

A =drainage area 

n=a  constant 

Such empirical formulas do not take into account the frequency of the event, and so are 

deficient for use in most design procedures today. 

The next step in the evolution of flood analysis equations came when attempts were 

made to account for flood frequency. Designers realized that the probable maximum flood 

expected was not the most efficient design criterion, so statistical elements were introduced. 
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The first equations to account for frequency were still empirical formulas such as the Hortan 

Equation: 

k 1;" 
4=-- A 

where: q=discharge (cfs/mi.) 

k= constant 

T, = recurrence interval (years) 

n=varies with location 

A = drainage area (mi. *) 

This particular equation requires the determination of two empirical coefficients and one 

hydrologic factor. Because the coefficients remain constant only within small regions, the 

equation is questionable for large regions. 

The next improvement was to include precipitation measures in the equations. One 

of the most famous in this group, and still widely used, is the Rational Equation. It has the 

form: 

Q=Cd 

where: Q =discharge (cfs) 

C =runoff coefficient (dimensionless) 

i =rainfall intensity (idhr) 

A=drainage area (acres) 

(2.3) 

This method takes frequency into account in the intensity term and assumes that rainfall 

frequency equals runoff frequency. The intensity is based on an intensity-duration-frequency 

curve. This method works well in many different regions. The biggest drawback to the 

Rational Method is that it is applicable only for small drainage areas. 
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The most recently developed methods are statistically based and offer the advantage 

of being derived from actual stream flow records. The stream flow data can be fitted to a 

probability distribution. Based on this distribution, peak flows for a given exceedence 

probability can be estimated by relating the measured peak flow to watershed characteristics. 

The probability distribution which determines the flood frequency (or exceedence 

probability) can be determined either by graphically or mathematically fitting the distribution 

curve to the data. Each method has advantages and disadvantages. The mathematical fit 

allows for consistency, but the resulting function has no apparent upper limit. The function 

could be extrapolated well outside of the fitted data without any basis in fact. Conversely, 

when a graphical fit is performed, the end of the drawn line is generally recognized ,as the 

limit of accurate prediction. 

Graphical Methods 

Graphical methods of fitting a distribution curve to data require the determination of 

a plotting position for each data point based on recurrence interval and discharge. 

Depending upon the method that is selected, special types of probability paper have been 

developed to make these points plot on a straight line. There have been many proposed 

ways to determine the plotting position. Some of these are listed below (Benson, 1962). In 

the following equations, T, is the recurrence interval in years, n is the number of years of 

record, and m is the rank of the record, with the highest record having a rank of one. I 

1 ~ The California Method is the simplest. The recurrence interval is given as: 

(2.4) 

This method has several problems. The highest return period that can be estimated 

is equal to the number of years of record. Therefore, if ten years of record were 

available at a site, the ten year return period is the maximum that can be calculated. 

Also, since the probability is the reciprocal of the return period, the lowest event 

of record has a probability of occurrence of one, which means that it is impossible 

for an event smaller than this to occur. 
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2 .  The Hazen Method attempts to artificially lengthen the record: 

I 

I 

1 

This gives a return period of approximately 2n for the highest flood of record, and, 

for example, if ten years of record were analyzed, the largest event would have a 

probability of occurring in 1 out of 20 years. 

3. The plotting position formula used by the USGS was developed in 1946 and is the 

most widely used method today: 

This is similar to the California method, but it lacks the theoretical problems. 

Other graphical methods have been proposed to give plotting positions. However, 

graphical fitting is not used widely today because of the availability of computer applications 

that can mathematically fit distributions. These mathematical methods estimate flood peaks 

for a certain return period independent of the number of points in the data set. Peaks can 

be determined for several different return periods, and these peaks can be plotted to give the 

frequency curve using the assumed probability distribution. 

Mathematical Methods 

Many different distributions have been proposed over the years for flood frequency 

analysis. Flood frequency data, however, does not conform exactly to any one of these 

proposed methods. Numerous studies have been done to improve the match between 

predicted distributions and the hydrologic data. 

Other proposed distributions for flood frequency analysis (Riggs, 1968) include the 

Normal, log-normal, Gumbel, and Log Pearson Type 111, and the more recent methods, such 

as the Wakeby Distribution (Houghton, 1978). These methods are be discussed below. 
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Normal Distribution 

The normal distribution is a common distribution used for many purposes. Fitting 

a curve to this distribution requires the computation of the sample mean and standard 

deviation. Using these values and tables of cumulative probabilities (published in most 

statistics texts), values for discharge can be determined for given exceedence probabilities. 

This method is not generally used for flood frequency distributions because it is bounded by 

negative infinity, and negative values are not possible in flood data. Generally, this 

distribution is of interest in hydrologic studies for other reasons, including assumptions about 

how errors and residuals are distributed in regression analysis (Neeter, 1990). 

Log-normal Distribution 

The log-normal distribution is similar to the normal distribution, except that the 

sample variables have been transformed by taking the logarithm. The data is linearized by 

this transformation, and negative values are eliminated. This distribution has been found to 

work well for flood frequency distributions (Bock, 1972:). 

Gumbel Distribution 

Sometimes called the Type I Extreme Value Distribution, this distribution requires 

the mode and scalar parameters. They are calculated as follows: 

and 

where: p = mode of sample 

a= scalar parameter 

X =  sample mean 

S = sample standard deviation 

(2.7) 
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yN, uN are functions of N (Table 2.1) 

N is the sample size 

i 

Table 2.1. Means and standard deviations of reduced extremes (Gumbel, 1958). 

N Y N  

10 
15 
20 
25 
30 
35 
40 
45 

50 
60 
70 
80 

90 
100 
200 
500 

lo00 

0.4952 
0.5128 
0.5236 
0.5309 
0.5362 
0.5403 
0.5436 
0.5463 
0.5485 
0.5521 
0.5548 

0.5569 

0.5586 
0.5600 
0.5672 
0.5724 
0.5745 

0.9497 
1.021 
1.063 
1.091 
1.112 
1.128 
1.141 
1.152 
1.161 
1.175 

1.185 

1.194 

1.201 
1.206 
1.236 
1.259 
1.269 

Once the parameters have been computed, the straight line probability is computed 

by the following equation: 

The variables are defined above. This distribution has also been evaluated extensively in 

flood frequency analysis (Bock, 1972; Wallis, 1985). 

Wakeby Distribution 

The Wakeby distribution is a five-parameter distribution given by the following 

equation: 

X=-a( 1 -q%( 1 - F ) d + e  
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F is a uniform variate between 0 and 1 that depends on the exceedence probability. The 

parameters a, b, c ,  d ,  and e are determined by regression in the following manner 

(Houghton, 1978): 

1. The equation is rearranged and transformed by taking the logarithms of both 

sides as below: 

(2.11) 

2.  Initial values are set for a and b. Usually, a=O and b = l .  An initial estimate of 

e is then made, and linear regression is performed over the range of annual flood 

peaks (xk) at the gage. A search is performed over the range of e to minimize the 

sum of squares. This results in estimates of c ,  d ,  and e. 

3. Using the estimated values for c ,  d, and e,  linear regression is performed again in 

the reverse direction. This gives estimates for a and b. Using the new values for 

a and b, step 2 is repeated. Usually, one repetition is sufficient. 

Most distributions require estimates of moments, such as mean, standard deviation, 

and skew. With each higher order moment, more instability and variation is introduced into 

the equation. This is not a problem with the Wakeby distribution because no moments are 

used to determine the parameters. Therefore, no additional uncertainty is introduced. The 

use of five parameters instead of two or three, however, makes the process more 

cumbersome. 

It has been pointed out (Houghton, 1978) that the Wakeby distribution can mimic 

other common distributions, but the inverse may not be true. Wallis (1985) used it and 

achieved excellent results. A detailed description of experiments and results are given later 

in this chapter. 

Log Pearson Type 111 Distribution 

The Log Pearson Type 111 (LP3) distribution is widely used. It is the method 

recommended for determining flood flow frequencies by the Water Resources Council (1981, 

hereafter referred to as Bulletin 17B). This is a three-parameter distribution. The three 
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parameters involved are the mean, standard deviation, and coefficient of skew. These 

parameters are estimated as follows: 

- 
NE (X-X) 

(N-l)(N-2)S 
G= 

(2.12) 

(2.13) 

(2.14) 

where: X = logarithm of annual peak flows 

N = number of items in data set 

X =  mean logarithm 

S = standard deviation of logarithms 

G = skew coefficient of logarithms 

- 

Since the skew coefficient is highly sensitive to extreme events, a procedure is given 

in bulletin 17B to weight the skew coefficient with a generalized skew value. The 

generalized skew is obtained from a generalized skew map published in bulletin 17B, and 

instructions are also given on how to develop a new skew map. The skew is weighted using 

the following formula: 

MSE, , (G) +MSE G( G ’ ) 
MSE,,+MSE , G,= 

where: G, = weighted skew coefficient 

G =station skew 

G’ =generalized skew (from map) 
MSEGI = mean-square error of generalized skew 

MSE, =mean-square error of station skew 

(2.15) 

i 

f 
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'he distribution is fitted by the following equation: 

Log( Q )  =X+KS (2.16) 

where: Q = discharge to estimate 

x= mean of logarithms of annual peak discharges 

L = frequency factor based on skew and return period 

S = standard deviation of logarithms 

- 

Although this method is the recommended technique for determining flood flow 

frequencies, it is not without controversy. It has been scrutinized since before bulletin 17B 

made its recommendations. Some problems with this distribution are discussed in the 

following section. 

Problems with Log Pearson Type I11 

One of the major concerns of this method involves the use of the skew coefficient. 

Tests have been performed (Hromadka 11, 1993) to determine if the skew coefficient at a site 

differs significantly from zero. Hromadka used single-station data to test the zero-skew 

hypothesis at significance levels of 80 and 90 percent and found that it was acceptable at 

those levels. 

Methods used for weighting the skew coefficient have also been investigated (Tasker, 

1978). Tasker performed a Monte Carlo simulation to determine the optimum weighting 

factor for the skew coefficient. The simulation involves generating random numbers from 

a known distribution, in this case the LP3 distribution. Values for mean and standard 

deviation were set, and the skew coefficient was varied. Large samples of random numbers 

were then generated. This type of simulation has an advantage over using actual data in that 

more records of a given length can be used. Tasker generated 500 samples for each of seven 

different lengths of record. 

Tasker rewrote the Bulletin 17B equation for weighting the skew coefficient as: 

I 

I 

G = WG+( 1 - W)G ' 
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where W is the weighting factor. He then used several different methods to determine the 

value for W. Besides the method recommended by bulletin 17B, he used the computed 

station skew with no weighting., the generalized skew map skew without the station skew, 

and a weighting method based on record length. That method is: 

N 
(N+20) 

W= (2.18) 

where N is the record length in years 

Using each of these procedures to weight the skew, he fit the data generated from the 

simulation to the LP3 distribution. He obtained the best results using the weighting method 

that takes into account length of record. He concluded that the weighting procedure 

recommended by Bulletin 17B often results in worse estimates of population skew than using 

the station skew itself. 

Other studies have disputed the LP3 distribution, suggesting that other distributions 

actually fit the data better. Bock (1972) performed tests to develop nationwide runoff 

regression equations for small rural watersheds. For this study, the Gumbel, LP3, and log- 

nonnal distributions distributions were analyzed. Data was used from 493 gages on 

watersheds smaller than 25 square miles. Goodness-of-fit tests were performed for each 

distribution. Compared to values for the 50- and 100-year return periods, L93 overshot by 

a factor of two to three. The Gumbel distribution was somewhat better, and the log-normal 

distribution was very close to the expected results. Bock also used a binomial goodness-of- 

fit test. This test again showed the LP3 distribution to be the worst fit, and log-normal to 

be the best. Log-normal was therefore the distribution he used in his study. 

A test by Wallis (1985) also shows that LP3 performs poorly against other 

distributions. He used Monte Carlo experiments to generate random numbers from a LP3 

distribution. He fit this data using six different methods,including a variation of the Gumbel 

known as the Generalized Extreme Value (GEV), LP3 with the skew weighted using several 

different methods, and the Wakeby distribution described earlier. 
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Using parameters estimated by each of the six distribution methods, Wallis compared 

the estimated design floods to the known true values. These experiments showed the 

Wakeby distribution performing the best, with the smallest confidence limits and the least 

amount of bias. Because of these results, Wallis 

recommended a re-evaluation of the procedures given in Bulletin 17B. 

The LP3 results were the poorest. 

A possible source of error in the LP3 method is the underlying assumption that 

discharge data are random (Creighton, 1993). Creighton examined long-period records for 

Arizona and found a definite cyclic pattern, leading him to conclude that time-dependent data 

are not distributed randomly. Therefore, statistical analysis cannot be properly ;applied to 

such data. 

One of the goals of Bulletin 17B was to provide a uniform technique for determining 

flood flow frequencies. This goal has been accomplished, even if the distribution is not the 

best one available. Until other methods or distributions are recommended to replace LP3, 

it will continue to be used, as it is in this report. 

REGIONALIZATION IN FLOOD FREQUENCY ANALYSIS 

The methods described in the previous section are applicable only where stream flow 

To estimate flood flow frequencies at ungaged sites one must use a 

Regionalization generalizes flood flow frequencies 

It effectively extends data points to 

The two methods of regionalization most 

data is available. 

technique known as regionalization. 

throughout a hydrologically homogeneous region. 

locations where gages have not been placed. 

widely used (Riggs, 1973) are described below. 

Index Flood Method 

The index flood method (IFM) applies a dimensionless flood flow frequency curve 

Dalryrriple (1960) for a region to the estimation of the index flood at a particular site. 

outlines the procedures for the IFM as follows: 

1. Tabulate peak annual flood data for all gages in the region having more 

than five years of record. 
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2. Prepare a bar graph showing the years of record available for each gage in order 

to readily select an appropriate base period. The longest length of record is 

typically used as the base period. The remaining records are adjusted to the base 

period by plotting the peak discharge at the base-period site vs. the peak discharge 

at the site lacking records, holding the year constant for each coordinate pair. A 

line is drawn through these points. The slope of the line is the correlation 

coefficient, which is then multiplied by the discharge of the base-period gage to 

estimate the discharge at the ungaged site. 

3. Use the estimates obtained in step 2 to rank the floods for each gage, with the 

highest flood being number one. 

4. Compute the recurrence interval for each flood. In most cases the 

graphical method is used. The USGS uses Equation 2.2.  

5. Plot frequency curves (discharge vs. frequency) for each station. 

6 .  Test for homogeneity. First divide the 10-year flood by the mean annual flood to 

obtain the 2.33-year flood. Next, calculate the average 2.33-year flood for each 

region. Then calculate the adjusted length of record, defined as the number of 

years that data was collected plus one half the number of years the record was 

extrapolated. A chart (Figure 2.1) is then used to plot the 10-year flood vs. 

effective length of record. If the values fall between the station frequency curves 

determined in step 5, the gaged sites are considered homogeneous and all can be 

used to develop the regional curve. Gages that fall outside the curves should be 

included in a different region. 

-7) Compute the median flood ratios. To perform this step, the flows for various re- 

turn periods are divided by the mean annual flood. For each recurrence interval, 

the ratios are averaged. These average values are then plotted against the 

corresponding probabilities. This is the regional frequency curve. 
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EFFECTIVE LENGTH OF RECORD, IN YEARS 

Figure 2.1 Test curves for homogeneity (Dalrymple, 1960) 

8) Plot mean annual flows against drainage areas for each gage. The curve defined 

here allows the estimation of the mean annual flood at a given site. 

9) The flow for a particular frequency can be computed by determining the mean 

annual flow, then comparing the local frequency to the regional flood frequency. 

The resulting ratio is next multiplied by the known mean annual flood to yield the 

flow rate for the desired frequency. 

The IFM was one of the first attempts to regionalize flood frequency. Many regional 

equations have been developed using this method. For Nebraska, there are three that cover 

the state (Reckman, 1962; Patterson, 1966; Matthai, 1968). All three of these methods are 

used by the NDOR Bridge Division to estimate flood frequencies. 
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Multiple Regression Method 

Multiple regression is a technique that relates different flood flow frequencies directly 

to a stream’s physical and climatological characteristics. One equation can be developed for 

each return period of interest for each region. 

To perform a regression analysis, discharges are first estimated for certain return 

periods at gaging stations. These estimates are then used as dependent variables in the 

regression analysis. The independent variables are the physical and climatological watershed 

characteristics. As stated earlier, the LP3 method is the recommended technique for 

determining the dependent variables (flood flows). 

Riggs (1973) provides a good background on regression techniques. The regression 

model typically used in flood frequency analysis is: 

~ , = d  b~ c ~ d . . .  (2.19) 

where Qn= is the discharge for return period n; a, b, c, d are the parameter estimates of the 

model; and A, B, C are the basin characteristics. The log transformation of this equation 

is linear. When regression is performed, logarithms are taken of both the dependent and 

independent variables. The parameters estimated in the regression analysis of the 

transformed variables can be placed in the form of Equation 2.19. The regression equations 

can then be applied to ungaged locations by plugging in the basin characteristics for the 

watershed of interest. 

NEBRASKA REGRESSION EQUATIONS 

Background 

The USGS regression equations for Nebraska (Beckman, 1976) were developed using 

recommendations in WRC Bulletin 15 (1967), which predated Bulletin 17B. These 

equations, therefore, do not reflect the most up-to-date methods. Both Bulletins 15 and 17B 

recommend use of the LP3 distribution for estimating flow frequencies at gage locations. 

However, Bulletin 15 does not cover any aspects of generalized skew coefficient. Beckman’s 
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notes indicate that he weighted the skew values for his regression analysis in some way, but 

his exact procedure is not clear. 

Beckman determined the best models for each hydrologic region (Figure 2.2) by using 

a stepwise regression. He placed a limit of three variables on the model selection to prevent 

the models from becoming overly complex. He also stipulated that the variables in the 

models would consist of two physical characteristics and one climatological characteristic. 

A constant value was subtracted from the climatological variables to keep the constant in the 

equation to a reasonable size. Beckman's equations require that the same independent 

variables be used for each frequency in a given region to avoid undulations in the computed 

frequency curve. Equations for 2-, lo-, 50-, and 100-year return periods for each region 

are shown in Table 2.2, 

Table 2.2 USGS regression equations for the five Nebraska regions for 2-, lo-, 50- and 
100-year return periods. 

Region 1 
Q2 = 1.56 A: 997 (P-13)' 952 Lo 794 

Qlo = 67.19 A: 737 (P-13)' '49 L'O M)8 

Q5o ~ 4 9 0 . 8 6  A,O 656 (P-13)' 742 L'O 543 

Q1,=996.78 A: 624 (P-13)O 588 La 512 

I Region 2 

(124,50-3)~ 320 Q 

Q5o = 0.51 A,O 8m S' Oo8 (124,50-3)3 632 

- 0.49 A 0 839 So 814 

QIW= 0.55 A: g72 S' 063 (124.50-3)3 731  

Region 3 
QZ = 103 A,' 231 (T3- 37)' 798 230 

Qlo = 412 A,' 026 (T3-37)' 741 L" 948 

Qso = 887 A: 891 (T3-37)' 703 I," 74s 

QlW= 1162 A:) 833 (T3-37)' 686 L" 671 

Region 4 
Q2 = 1774 A' 226 (124.50-5) 1831  ~ - 1  380 

I 
Qlo = 8475 A' 451 (I24,50-5)' 49' L-' 783 

Qso = 22301 A'  650 (124,50-5)' 382 08' -4 QIW=31454 A' 724 (IZ4,50-5)I 36s L-' 

Region 5 
-- 

QZ = 0.94 A>831 (TI-11)' 606 Soso' 

Qlo= 13.25 A> 721 (TI-1 1)' ' 1 4  So 443 

Q50= 44.07 A> 687 (TI-1 1)' &15 So 5 2 1  

Q1,=63.87 A>680 (TI-11)074' SO5" 

A,= contributing drainage area (mi2 ); A = total drainage area (mi2); P = average annual precipitation (in.); 
L = basin length (mi.); S = slope (Wmi) between 0. I and 0.85 basin length above outlet; 124,50 = 50-yr, 24-hr 
rainfall (in.); T3 = normal daily March temperature (OF); TI = mean minimum January temperature (OF). 
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Justification for Revising Regression Equations 

A major goal of this project was to update procedures within NDOR for hydrologic 

calculations. The USGS regression equations are apparently inferior to more recent 

methods, but the question remained whether improvements were great enough to justify the 

expense of developing new equations. Hardison (1971) developed statistical tests to 

determine the equivalent years of record required to improve the estimates from a gage 

location. This process could not be applied to Beckman's study because several statistics 

required for the test were no longer available. These included average skew in each region, 

average interstation correlation coefficient, and the standard error of estimate for each 

equation. 

However, considerations other than statistical analysis do justify updating the 

equations. First, the equations do not reflect current procedures, especially in the area of 

skew weighting. Second, the standard error of the skew coefficient is strictly a function of 

record length (Victorov, 1978), which has increased by some 14 years since Beckman 

developed the USGS equations. Figure 2.3 plots the standard error of the skew coefficient 

against length of record. For the gages used in both this study and the Beckman study,the 

standard errors of skew are 0.388 and 0.472, respectively. Preliminary results by Hotchkiss 

and Cordes (1993) using the new regression equations show significant improvements in the 

LP3 estimates for those gages. 
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Figure 2.3 Standard error of skew coefficient plotted against length of record. 
I 
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Chapter 3 

PREVIOUS RESEARCH 

As stated earlier, this project is the third in a series of studies funded by NDOK to 

analyze culvert and bridge design procedures. The first project, entitled "A Hydrologic 

Evaluation of Twenty-four Small Watersheds in Nebraska," was completed by Riley in 1988. 

The second project, entitled "Hydrologic and Hydraulic Design of Culverts, I' was completed 

by McCallum in 1992. This chapter highlights the results and recommendations of the 

previous work, and attempts to connect all three studies coherently. 

RESULTS FROM RILEY 

Riley's study (1988) evaluated two runoff models, the Rational Method and SCS 

TR-55. The curve numbers used in the TR-55 analysis were taken from a generalized curve 

number map instead of being determined in the manner set forth in the TR-55 manual (SCS, 

1986). Twenty-four small, ungaged rural watersheds in Nebraska were chosen from NDOR 

culvert design projects. These sites ranged from 35 to 1300 acres in size. 

For each runoff model, four different time-of-concentration methods were used. 

These four methods included a nomograph currently used by NDOR, the Kirpich equation, 

the SCS lag equation, and an estimate based on Manning's velocity. The results of the two 

runoff methods using each time of concentration method were compared at each of the 24 

sites. 

A detailed hydraulic analysis was also performed at four of the selected sites. These 

This analysis four sites were chosen because of the detailed data that were available. 

evaluated the effect of storage and flow routing through the culverts. 

Riley used computer evaluation of different design methods and reviewed technical 

He made the following literature. 

recommendations: 

No actual data were collected at any of the sites. 

1. Calculate times of concentration by summing overland flow times and channel flow 

times. Overland flow should be calculated by a technique that takes into account 
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the runoff potential of the basin. This implies using an equation with a runoff 

coefficient. 

2. Use the TR-55 method for watersheds greater than 300 acres. This allows the 

watershed to be divided into homogeneous areas, and the peak discharges of each 

subarea to be routed to the basin outlet. Continue to apply the Rational Method to 

watersheds less than 300 acres. 

3. When calculating watershed slope, use the Gray Method. In this method, a straight 

line is drawn in the profile of the watershed slope from the outlet, equally dividing 

the areas above and below the line. 

4.  Add a frequency coefficient to the rational method. This makes the runoff potential 

more representative of higher return period events. 

5 .  Use the intensity-duration-frequency (IDF) curves developed in the Riley study 

instead of the IDF curves currently used by NDOR to determine rainfall intensity. 

The two sets of curves are based on dissimilar rainfall regions. 

6. When using the IDF curves, examine a range of intensities bracketing the design 

duration. 

7 .  Include a range of frequency events and evaluate potential storage. 

Riley recommended further research on application of a risk perspective to culvert 

design. Because of the large amount of money the State spends on small watersheds, his 

judgment was that researching culvert design would be a wise investment. Other topics he 

suggested for future investigation were the relationship between runoff storage and reduction 

in headwater, and the effect of using generalized curve numbers in the SCS TR-55 method. 

RESULTS FROM McCALLtJM 

McCallum’s project (1992) expanded on some items addressed in the Riley study. 

The goal of this project was to determine the most applicable method for estimating peak 

discharges. This included determining the best method for obtaining time-of-concentration 
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estimates. Data were collected and compared to results of different estimation methods for 

both time of concentration and peak discharge. 

The first step in McCallum’s research was to find suitable gaging sites. Four sites 

were chosen, all smaller than 1.8 square miles, and on agricultural land. Previously gaged 

sites were used so that peak discharge results could be compared to LP3 estimates. Stream 

gages were placed at the main site as well as on upstream culverts. This allowed for 

measurement of time-of-concentration and peak discharge on watersheds of several different 

sizes within each larger basin. Rain gages were placed at the centroid of each of the four 

basins. With the rain gages and the stream gages on the watersheds, both the time of 

concentration and the peak discharge could be physically measured for each significant 

rainfall event. 

The next step was to analyze several different methods for estimating time of 

concentration and peak discharge. Seven time-of-concentration equations and eight peak 

discharge methods were evaluated. The results of these methods were then compared to the 

actual field data. One limitation of the field data was the lack of any high return period 

storms in the two years that the gages were in place. 

Based on this research, McCallum made the following recommendations: 

1. Continue to determine time of concentration by use of the NDOR nomograph. 

2. Apply an adjustment factor of 1.5 along with the nomograph for agricultural 

watersheds. 

3.  To permit use on narrow, long watersheds, extend the length axis of the 

nomograph. 

4. Use the Kirpich equation to estimate time of concentration if the nomograph is not 

applicable. Again, use the 1.5 factor for agricultural land. This will result in some 

over-design due to the use of a higher rainfall intensity and, consequently, a higher 

peak discharge. The higher rainfall intensity calculation is the result of slightly 

different variables in the computation process. 
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5. Continue the current NDOR peak discharge procedures until more data can be 

clollected and the entire research project is completed. Specifically, the Rational 

Method should be used for watersheds of less than one square mile, and the Potter 

Method should be used for areas between 1 and 25 square miles. [Note: additional 

field data is currently being collected at the same study sites.] 

6 .  If there were no basis for developing the new regression equations, then the design 

procedure should be changed as follows: use the USGS regression equations 

(13eckman Equation) for areas less than two square miles and continue to use the 

Potter Method for areas from 2 to 25 square miles. These methods require no 

time-of-concentration estimates. Once peak discharge research on larger watersheds 

is) completed, replace the Potter Method with new methods that take this factor into 

account. 

7. The IDF curves developed by Riley are better than the current NDOR IDF curves 

because they allow for longer storm duration. 

8.  Use the runoff coefficients from the Stephenson table for the Rational Method. The 

table of coefficients from the NDOR manual gave the best results, but proper 

selection of a C value is more likely with the Stephenson table. The latter includes 

additional factors such as more types of land use, corrections for slope, mean 

annual precipitation, and recurrence interval. This is shown by Table 2.4 in 

McCallum’s report. 

9. Data collection at the four sites should continue until a large event can be recorded. 

This should include only the main sites, using only the transducer gages, to allow 

faster data collection. [As stated above, this data collection has continued through 

the summer of 1993 and may continue beyond that.] 

DISCUSSI[ON 

Riley and McCallum do not reach precisely the same conclusions. This is to be 

expected due to differing methods used by the two. Since McCallurn’s results are based on 

actual observations, in case of conflict (i.e., time-of-concentration calculations) his 

recommendations will be the ones incorporated into the new NDOR design manual. 
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Chapter 4 

CURRENT DESIGN PROCEDURES 

Currently, the NDOR Roadway Design Division and the NDOR Bridge Division each 

use different methods for determining peak discharges. Some disparites in design procedure 

are due to the sizes of drainage areas assigned to each division. Since the Roadway Design 

Division only designs culverts, their drainage areas are generally small. The Bridge 

Division, on the other hand, deals with relatively large drainage areas. This chapter covers 

procedures currently used by each division. 

ROADWAY DESIGN DIVISION 

The Roadway Design Division manual lists two basic methods for calculating peak 

discharge, the Rational Method and the Potter Method. Occasionally, however, other 

methods are used. These include the USGS regression equations, the SCS TR-55 method, 

and computer programs developed by NDOR. The following sections detail these methods. 

Rational Method 

The Rational Method is an empirical equation that is relatively simple to use. The 

classic form of the equation is shown below: 

Q=Cd 

where: Q = runoff (cfs) 

C = dimensionless runoff coefficient 

i = rainfall intensity (idhr) 

A = drainage area (acres) 

(4.1) 

Note that the units on the variables are not homogeneous. To convert from inches- 

acredhour to cubic feet per second requires a coefficient of 1.008, which is close enough 

to 1.0 that it is generally ignored. Several assumptions and limitations are associated with 

the Rational Method (McCallum, 1992), which are listed below: 
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1. It assumes uniform rainfall over the entire watershed. 

Surface Type lolo- 2% 

Pavement, Roof Surfaces, etc. 0.80 
Earth Shoulder 0.55 
Gravel or Stone Shoulders 0.45 
Grass Shoulder 0.30 
Side Slopes - Earth 0.50 
Side Slopes -Turf 0.40 
Median Strips - Turf 0.30 
Dense Residential Areas 0.60 
Suburban Areas with Small Yards 0.40 

Cultivated Land - Clay and Loam r 0 . 3 5  

Cultivated Land - Sand and Gravel 0.25 
Parks, Meadows and Pasture Land 0.20 

- 

2. The peak discharge computed from the equation has the same frequency as the 

rainfall intensity (i) used in the equation. 

2% - 10% Over 10% 

0.90 0.95 
0.60 0.70 
0.50 0.60 
0.35 0.40 
0.60 0.70 

0.50 0.65 
0.35 0.40 

0.65 0.80 
0.50 0.60 
0.50 0.60 
0.30 0.35 
0.25 0.35 

3.  The peak discharge occurs only while the entire watershed is contributing. 

4. Conversely, the time-to-peak, or the time of concentration, is the time when the 

entire area is contributing. 

5. The Rational Method does not account for runoff that is primarily channel flow. 

6.  Drainage areas must be small to ensure that the uniform rainfall assumption is 

met. The current NDOR manual calls for drainage areas to be less than or equal 

to 640 acres. 

7 .  The runoff coefficient C is considered constant for each storm. 

The value for C is obtained from tables based on land use or cover and surface slope. The 

table used in the current design manual is reproduced as Table 4.1. 

Table 4.1 Values of Coefficient of Runoff (C) (from NDOR, 1984) 

29 



Rainfall intensity is obtained in two steps. First, the time of concentration (t,) is 

calculated. Next, the intensity is obtained from an IDF curve. The time of concentration 

is determined by use of a nomograph as shown in Figure 4.1.  

To use the nomograph, first find the difference in elevation between the divide and 

the watershed outlet (H). Then measure the total flow length (L). These two values are 

generally obtained from a topographic map. Use a straight edge to connect the two points 

and continue the line to a point on the t,. axis. This value is the time-of-concen,tration (t,). 
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Figure 4.1. NDOR nomograph for calculating t, (from NDOR, 1984) 
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i Once t ,  has been calculated, the IDF curves are used to determine intensity (i). 

NDOR currently divides Nebraska into eight different rainfall regions (Figure 4.2),  each of 

which has an IDF curve. The IDF curve for Region 1 is shown in Figure 4.3 as an 
example. To obtain i, enter the IDF curve along the x-axis using t, as the time. Next, 

follow this time vertically until it intersects the curve corresponding to the required return 

period. From the point of intersection, follow the line to the left to obtain i.  

Once C and i have been determined, the only remaining variable is the area. This 

is measured directly from a topographic map using a planimeter. When all of the values 

have been determined, the calculation is straightforward. 

Figure 4.2. Rainfall intensity zones for Nebraska (from NDOR, 1984) 
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lntensi t 
(in./hr 

Time (min.) 

Figure 4.3. IDF curve for rainfall Zone 1 (from NDOR, 1984) 

Potter Method 

The Potter Method is used by NDOR for basins with drainage areas between 640 and 

16,OOO acres, except for the Sandhills region. It is a flood index method, using precipitation 

and topographic indices. 

The first step in using the Potter Method is to obtain the drainage area, the channel 

length, and elevations at the headwater, at 0.7 the length of the channel, and at the outlet. 

These can be measured from a topographic map. Next, using these values, the topographic 

index (T) is determined using the following equation: 

0.7L -+  0.3L T= 
/ E L  ( H W )  -EL (0.7L ) ,/EL (0.71. ) -EL (0) 

0.3L 0.7L 

where : L = length of channel (mi.) 

EL(HW) = elevation at headwaters (f t . )  

EL(O.7L) = elevation at 0.7 channel length (ft.) 

EL(0) = elevation at outlet (ft.) 

(4.2) 
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The precipitation index is determined from the map illustrated in Figure 4.4. Values 

for the precipitation index are defined as the amount of precipitation in inches that might be 

exceeded during a 60-minute period once every 10 years, on the average. 

The 10-year index flood is taken from the nomograph shown in Figure 4.5.  Enter 

the graph at the lower left-hand side with the drainage area. Then, proceed up until the line 

representing the previously computed topographic index is reached. From this point, 

proceed to the right until the line representing the precipitation index is reached, and then 

move up to the top to the graph to find the corresponding 10-year flood index. 

The next step in the Potter Method is to determine the similarity of the design water- 

shed to those used in the original calibration of the method. To do this, calculate the topo- 

graphic index (T,) of the calibration watersheds from the nomograph shown in Figure 4.6. 

The percentage difference between T and T, is then calculated using Equation 4.3: 

Te- T 

'e  

loo(-) (4.3) 

Figure 4.4. Precipitation index for Nebraska (from NDOR, 1984) 

4 O0 
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I ARC. IU 1,000 A C R E S  

Figure 4.5. Nomograph for determining the 10-year flood index Qlo (from NDOR, 1984) 

Figure 4.6. Nomograph for calculating the topographic index T, (from NDOR, 1984) 
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I f  the difference is greater than +/-  30 percent, the watersheds are considered dissimilar and 

a correction factor must be used. This correction factor is obtained from the graph shown 

in Figure 4.7.  

Figure 4.7. Adjustment factor for the Potter Method (from NDOR, 1984) 

The final step in the Potter Method is to convert the 10-year discharge to the design 

discharge required. This is done by use of the following equations: 

QVALUES Computer Program 

The Department of Roads has developed a computer program to aid in computing 

The program, QVALUES, was written by an NDOR engineer and is peak discharge. 
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available on the main frame computer. This program is recognized in the current design 

manual as a way to determine peak discharges. It uses either the Rational Method or the 

Potter Method to compute these peak flows, depending on the drainage area input. The 

inputs to the program are the same as required for the methods previously discussed. 

SCS TR-55 Method 

The TR-55 method is not listed in the current design manual, but it is used by some 

NDOR engineers. It is available to them on a personal computer. TR-55 uses either the 

graphical or tabular method to estimate peak discharges. The former estimates only peak 

flow, and the latter generates a complete hydrograph. The graphical method is discussed 

below since this section deals only with estimating peak discharges and not with generating 

hydrographs . 

The first step in using the TR-55 method is to determine a curve number (CN). The 

CN value is dependent upon land use, soil type, and hydrologic condition of the basin. CN 

values are obtained from charts (SCS, 1986). One assumption of this method is that the 

watershed is homogeneous, which means it can be represented by one CN value. If this is 

not the case, an area-weighted CN may be used. 

The total runoff from the basin is calculated by the following formula: 

(P- 0.2S)Z 
(P+0.8S) 

where: Q = total runoff (in.), 

P = rainfall (in.), 

S = potential maximum retention after runoff (in.), 

(4.4) 

and S is computed as follows: 

1000 S=-- 
CN 
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Once the total runoff is known, the peak flow rate is determined by the following 

equation: 

where: q, = peak discharge (cfs), 

qu= peak discharge/mi.* per inch of runoff, 

A,= drainage area (mi.2), 

Q = total runoff (in.), 

F,= pond and swamp adjustment factor. 

(4.6) 

The computer program is user-friendly and quick to use. The user inputs include 

drainage area, CN,  time of concentration, and rainfall depth and frequency. The rainfall 

depth can be obtained from a rainfall atlas. The program then provides the peak flow for 

each storm entered. 

Beckman Regression Equations, WRI 76-109 

The Beckman regression equations (USGS, 1976) are not specifically mentioned in 

the current design manual. However, some engineers in the Roadway Design Division do 

use these, either as a primary method or as a check of the values computed using other 

methods. This method is used more widely in the Bridge Division than it is in the Roadway 

Design Division. Therefore, it will be discussed in the next section. 

BRIDGE DIVISION METHODS 

The Bridge Division computes peak discharge estimates using several different 

methods, which are then compared. The choice of final design estimate is based upon the 

engineer’s experience and judgement. Of the eight methods that can be used, five or six 

are used in each application, depending on data availability, drainage area, and location. 

These methods include Circular 458 (USGS, 1962), WSP 1679 (USGS, 1966), WSP 1680 
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(USGS, 1968), WRI 76-109 (USGS, 1976), the Rational Method, the Potter Method, 

NDOR Index Flood Method, and gaging station records. These methods are discussed 

below, except for the Rational and Potter Methods which were discussed in the previous 

section. 

Figure 4.8. Map of Nebraska showing flood-frequency regions and hydrologic areas 
(USGS Circular 458). 

Circular 458 Method 

This method is applicable for drainage areas within Nebraska that are under 

300 square miles. It was developed by analyzing the maximum peak flows for 142 gages 

in Nebraska. Based on these records, relationships for the mean annual flood were 

developed for 10 hydrologic areas, shown in Figure 4.8. These relationships are dependent 

only upon drainage area. The mean annual flood is defined as the 2.33-year flood. 

The first step in using this method is to determine which of the 10 hydrologic areas 

is applicable to the design. Then the mean annual flood can be determined from the drainage 

area by using the appropriate equation, shown in Table 4.2. The mean annual flood is then 

related to the return period of interest by a simple ratio. Ratios for each area are shown in 

Table 4.3. 
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Table 4.2. NDOR Bridge Division hydrologic equations for finding mean annual flood 
(Q2.33) from drainage area (DA). 

Hydrologic 
Area 

Equation for Discharge 

REGION A 

REGION B 

1 

8 

9 

10 

In Q2 3 3 =  2.369 + 0.7404 * ln(DA) 

In QZ 33= 1.645 + 0.7155 * In(DA) 

In Q2,33= 3.134 + 0.7232 * In(DA) 

2 

REGION A 

3, 4 

5 

6 

7 

REGION B 

In Q2,33= 5.713 + 0.5271 * In(DA) 

In Q2,33= 5.999 + 0.5511 * In(DA) 

In Q2 33= 3.634 + 0.6862 * In(DA) 

In Q 2 3 3 =  3.806 + 0.4985 * ln(DA) 

In Q2.33= 4.972 + 0.5145 * In(DA) 

In Q2,33= 2.265 + 0.8354 * In(DA) 

Qio 1 S O  

Q2s 1.80 

Qso 2.20 

Qirn 2.60 

Table 4.3. Ratios of recurrence interval flood (QRI) to mean annual flood (Q2.33). 

Water Supply Papers 1679 and 1680 

The equations in WSP 1679 and WSP 1680 are similar to those of Circular 458, but 

were developed on a nationwide scale. WSP 1679 covers a region including watersheds that 

drain into the Missouri River above Sioux City, Iowa, in the extreme northern part of 

Nebraska. The region covered by WSP 1680 includes the rest of Nebraska (Figure 4.9). 
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The two WSP methods for estimating peak discharge are mutually exclusive and depend on 

the location of the design. The equations and ratios that apply to Nebraska are listed in 

Tables 4.4 and 4.5. 

Area 

Table 4.4. Equations for peak discharge estimation from WSP 1679 and WSF’ 1680. 

WSP 1679 WSP 1680 

10 1 
11 In Q2 33= 1.757 + 0.7150 * ln(DA) 

12 I_____ 
13 In Q2 -,3= 3.621 + 0.6774 * In(DA) 

-- 

7 1  
In Q2 33= 5.3239 + 0.4754 * ln(DA) 

In QZ 33= 3.3487 + 0.7108 * ln(DA) 

In Q233= 4.3068 + 0.5516 * In(DA) -- 

In Q233= 3.7136 + 0.4371 * In(DA) 

1 In Q2,33= 1.6769 + 0.7581 * ln(DA) 

15 I In Q2 33= 5.746 + 0.5172 * ln(DA) 

19 

Table 4.5. Peak discharge values for Nebraska Regions A-G, developed from graphical 
representations in WSP 1679 and WSP 1680. 

In Q2 ,,=5.7429 + 0.5652 * In(DA) 

I WSP 1679 I WSP 1680 

Beckman Regression Equations, WRI 76-109 

This method uses regression equations developed for Nebraska in 1976 by regressing 

basin characteristics against peak flow estimates for different return periods. The peak flow 

estimates were obtained by performing an LP3 analysis on stream flow records. The State 

was divided into five hydrologic regions, and regression equations were developed for each 

region. Each region uses two physical characteristics and one climatological characteristic 
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as the variables in the equation. The equations follow the form shown earlier in Table 2.2. 

WRI 76-109 also contains maps which can be used to determine any of the climatological 

variables. The length, slope, and area characteristics can be measured from a USGS 

topographic map. 

NDOR Index Flood Method 

NDOR personnel developed this IFM in 1972 by performing a stepwise regression 

analysis of all stream gage records in Nebraska. This method involves calculation of a 

topographic index, a precipitation index, and a flood index. Estimate of the 50-year 

discharge is made, from which the 100-year flood is predicted. An outline of this method 

follows. 

1. Measure from a USGS topographic map the following characteristics: drainage area 

(A, mi.2), basin length (b, mi.), basin width (Wb, mi.), stream valley length 

(Lv, mi.), elevation at the rim (Er), elevation at a control point (L,) located at 

0.7 L,, and elevation at the outlet. 

2.  Calculate the average valley slope by the following equation, using the values 

obtained in step 1: 

3 .  Calculate the topographic index (Ti ) using the following equation: 

Wb ’ I3 T.=A 0.5*(-) * ( S y ) 0 - S  

Lb 

(4.8) 

4. Determine the precipitation index (Pi ), defined as the 12-hour, 50-year precipitation 

at the site divided by 5. 

5. Obtain the runoff ratio (RR), which is the inverse of the drainage basin 

permeability. NDOR has soil maps for the entire state, with permeability rates for 
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each soil type calculated. The design permeability is determined by an area- 

weighted average permeability for the entire basin. 

6. Use the following equation to find the flood index (FI): 

FI=T,*Pi*RR 

7.  Calculate the 50-year discharge (Q50) as follows: 

Q5,=95 ,000(F1)2.’5 

8. Taking Q5o times 1.25 results in a figure for the 100-year flood (Qloo): 

QloO=~.25*Qs0 

Gage Records 

(4.9) 

(4.10) 

(4.11) 

The Bridge Division may also use gage records to calculate peak discharge, but only 

if gage records exist at or near the site. Such records can then be used to perform an LP3 

analysis at the site. This method is described in further detail in the next chapter. 
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Chapter 5 

USGS REGRESSION EQUATION UPDATE 

The Nebraska office of the USGS performed a regional flow frequency anallysis for 

the State (Beckman, 1976) which used gaging station records through water year 1972. 

Since that report was completed, an additional 19 years of stream gaging data have gone on 

record (the current study includes records through water year 1991.) There have aliso been 

new, standardized techniques developed for performing regional flow frequency analysis 

since the Beckman report was completed. 

Based upon the new standardized techniques presented in Bulletin 17B (U.S. Water 

Resources Council, 1981), there are three basic steps to developing regional peak flow 

equations. The first step is to update the peak flow estimates at all gaging stations using LP3 

analysis. These estimates will be used later in the regression equation development as 

dependent variables. In updating these peak flow estimates, a generalized skew term is used, 

which requires the development of a generalized skew map. This generalized skew is 

weighted with the station skew at each gage to eliminate the effect of extreme events. The 

three-step procedure is discussed in detail below. 

Once these steps have been completed, regression equations can be developed. The 

regression equations use several stream flow characteristics and climatological variables to 

predict peak flows at the gaging stations. The results of these calculations can then be used 

to predict peak flows at locations where no gaging station records are available. These three 

steps are discussed in detail below. 

LOG PEARSON TYPE I11 (LP3) UPDATE 

The LP3 method is a statistical distribution, as discussed in Chapter 2 of this report. 

This distribution is recommended by the U.S. Water Resources Council in Bulletin 17B for 

determining flood flow frequencies. The LP3 distribution has three parameters: the mean, 

the standard deviation, and the skew coefficient of a data set. The data, in this case, are the 

annual peak discharges at a gaging station. The general equation for this distribution is: 

Q,=X+KS 
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where: QL = logarithm of annual peak discharges, 

X =mean of logarithms of annual peak flows, 

K =factor dependent on skew and exceedence probability, 

S =standard deviation of logarithms of annual peak flows. 

The mean, standard deviation, and skew coefficients are calculated as below: 

N* r, ( X 3 3  
( N - ~ ) ( N - ~ ) s  3 

G= 

(5.3) 

(5.4) 

where: N = number of items in data set, 

X = logarithm of annual peak flow, 

G = skew coefficient of logarithms of annual peak flows. 

Figure 5.1 shows the relationship between the skew coefficient, the return period, and 

the frequency factor K. 

To perform the LP3 analysis for this report, the computer program HECWRC was 

used. This program accompanies WRC Bulletin 17B. The data used for the update was 

obtained from the Nebraska office of the USGS. This data was then formatted for compati- 

bility with the computer program. 

After the records were obtained from the USGS and put in the proper format, the 

gages that did not fit the cirteria prescribed by Bulletin 17B had to be eliminated. Only data 
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Figure 5.1 K-values for different skews and return periods. 

from gages having peak discharge records for at least 10 years and nonzero peak flows 

for at least 75 percent of the records passed the first test for inclusion. 

The next step was to determine which gages were on streams that were essentially 

uncontrolled. A list of all the dams in Nebraska was obtained from the Department of Water 

Resources. The gaging stations and their drainage basins were marked on one-degree-by- 

two-degree quad maps that included all of Nebraska and parts of Wyoming, South Dakota, 

Colorado, and Kansas. The dams were also located on the maps, and if more than 25 percent 

of the drainage area appeared to be controlled, the gage was eliminated. 

SKEW MAP DEVELOPMENT 

After selecting the gage sites that conformed to the specifications of Bulletin 17B, 

we determined the generalized skew coefficient. Bulletin 17B suggests the use of a general-, 

ized skew coefficient to be weighted with the station skew in order to eliminate the effect of 

extreme events. As Equation 5.4 shows, very small or very large values for X result in 

large: positive or negative values for the skew because (X -X) is cubed. The effect of 

extreme events on small samples is especially pronounced. 

Bulletin 17B contains a generalized skew map for the entire nation. This map, 

however, uses only gaging stations with records through 1973. The author of Bulletin 17B 
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notes that this map may not be accurate for some regions, and recommends that users 

perform their own detailed studies for generalized skew relationships. Therefore, this study 

developed a skew using procedures outlined in the bulletin, as detailed below. 

The first step was to determine which stations to use in developing the map. These 

stations had to meet the same criteria as the gages used in the LP3 update, with the 

additional requirement of 25 years of gage records instead of 10. 

After the skew coefficient for the selected gages was calculated, the next step was to 

locate the centroid, or center of mass, of each of the drainage basins. This was accom- 

plished by tracing the drainage areas and cutting out the shapes. A hole in the shape was 

then made with a pin, the pin was held horizontally, and the shape was allowed to pivot on 

the pin. A vertical line down from the pinhole was drawn on the shape. The pin was then 

moved to another location on the shape, and the procedure was repeated. The intersection 

of the two lines defines the centroid of the shape. The traced shape was then placed back 

over the map, and the centroid was transferred to the map. The Natural Resources 

Commission supplied the map that was used for most of the centroid locations. The few 

drainage basins corresponding to USGS gaging station locations not located on this map were 

traced from the one-degree-by-two-degree quad map mentioned above. After all of the 

centroids were located on one of the maps, the latitude and longitude for each gage was 

ascertained. 

The next step was to average the skew coefficients. This was done in the same way 

that the skew map was developed for Bulletin 17B. The State map was divided into one- 

degree square quads, and all gage centroids falling within each quad were averaged. This 

average was then plotted at the center of that quad. The computer software package 

SURFER took these points and developed an isoline skew map. The X and Y coordinates 

of each point on the map were the coordinates of the center of each one-degree quad, and 

the Z coordinate was the quad’s average skew coefficient. For this skew map, 143 gages 

were used, compared to 46 for the map developed in Bulletin 17B. Figure 5.2 shows the 

new skew map, and Figure 5.3 shows the approximate map taken from Bulletin 17B. 
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Figure 5.2 Updated skew map for Nebraska 

Figure 5.3. Bulletin 17B skew map (from Water Resources Council, 1981) 

Bulletin 17B publishes a nationwide standard deviation of about 0.55 for station skews 

from its isolines. For Nebraska, however, this was found to be about 0.78. The new skew 

map reduced standard deviations for Nebraska to about 0.59. 
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REGRESSION EQUATION DEVELOPMENT 

The purpose of regression equations is to estimate peak flows at locations were gaging 

station records are not available. These equations were developed by using physical and 

climatological characteristics of the watersheds corresponding to each gaging station location. 

These characteristics were used as the independent variables, and the peak flows estknated 

from the LP3 distribution were used as the dependent variables. By measuring these 

characteristics at other locations, the peak discharges can be estimated. 

The regression equation development process began by determining the physical 

watershed and climatological variables for each gaging station. The data for most gaging 

stations were gathered from the USGS database. Characteristics of missing stations were 

obtained from maps. The characteristics used are listed below: 

A = Drainage area (mi.2), 

A, = 

L = 

S = 

Contributing drainage area (mi. 2 ) ,  

Length from station to basin divide along main channel (mi.), 

Slope, measured from the elevations at .10 and .85 of the channel length, 
divided by L (ft./mi.), 

Average annual precipitation (in.) [Figure 5.41, P = 

124,2= Rainfall intensity for a two-year, 24-hour event (in./hr.) [Figure 5.51, 

124,50=Rainfall intensity as above, except for a 50-year event (Figure 5.6) ,  

SNlO=Equivalent moisture content of snow (in.) as of March 15 (Figure 5.7),  

T, = Mean minimum January temperature (OF) [Figure 5.8.1, 

T2 = Mean maximum July temperature ( O F )  [Figure 5.91, 

T, = Normal daily maximum March temperature (OF) [Figure 5 .  lo], 

E = Average annual lake evaporation (in.) [Figure 5.111. 

After all of these characteristics were determined for each station, the stations were 

divided into hydrologic regions previously defined in the USGS report (Beckman, 1976). 

These regions were shown earlier in this report (Figure 2 . 2 ) .  
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The regression process was then performed for each return period of interest and for 

each region using the statistical computer program SAS. Model selection was based upon 

the three-variable model resulting in the highest R2, restricted to the same characteristics for 

each return period in a given region. Each return period, however, resulted in different best 

models. To handle this problem, the ten best models were considered for each return period 

in each region. They were then ranked according to the R2 value, 1 being the lowest and 

10 the highest. This was done for each return period. The rank values were added together 

for the region, and the model with the highest score was chosen to represent the region. 

Problems were encountered in Region 1, however, using this method. Only two of 

the three variables were found to be significant in the model. For this reason, a stepwise 

regression method was performed in an attempt to build the best three-variable model, 

instead of basing it on the R2 criteria. This procedure also resulted in only two variables 

being significant. For this reason, Region 1 is the only two-parameter model. 

Region 1 had the poorest fit of all of the regions, a result which was also found in 

the USGS study (Beckman, 1976). This may be explained by the way Beckman delineated 

the regions. They were determined by plotting the residuals from the regression on a map. 

From this plot, the gages were divided into regions 2 through 5. The remaining gages that 

didn’t fit well into any other region were lumped together in Region 1. 

In the development of these equations, some cases were found to exert a high degree 

of influence on the regression line. The gage records in those cases were checked to be sure 

that no abnormalities were in the data, such as variables that fell far outside the usual range. 

Based on these examinations, there was no apparent justification to eliminate any of the 

data. The resulting equations from the regression update are shown in Table 5.1. 
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Figure 5.5. 2-year, 24-hour rainfall intensity (in.) (U.S. Weather Bureau, 1961) 

Figure 5.6. 50-year, 24-hour rainfall intensity (in.) ( U . S .  Weather Bureau, 1961) 

Figure 5.7. 10%-probability-equivalent moisture content of snow as of March 15 (in.) 
(U.S. Weather Bureau, 1964) 
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Figure 5.11. Average annual lake evaporation (in.) (U.S. Weather Bureau, 1959) 
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Table 5.1 New regional regression equations for Nebraska 

Return Period 

2 

10 

so 
100 

200 

500 

2 

10 

50 

100 

200 

500 

2 

10 

50 

100 

200 

500 

REGION 5 

Q2= 0.00137 A: 7W So 777 124,28 036 

Qlo= 0 00126 A: 687 So 683 124,210 037 

Qso= 0.00240 A> 632 So 640 124.210 467 

Qlm= 0.00335 A: 615 So 628 124.210 491 

QZm= 0.00464 A: 599 So 618 I lo 490 

Qsm= 0.00755 A: So 606 12, 2I0 393 

24.2 

REGRESSION EQUATION STATISTICS 

One way to show the value of updating the regression equations was to use current 

data in both the new equations and the old ones and then compare the results. This check 

was performed as previously outlined. The pertinent statistics for each of the regression 

equations are listed in Table 5.2. 
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i After these regression equations were developed and analyzed, the following 

observations were made : 

1. The value of R’ was lower for each of the models using the old regression equa- 

The one exception to this was in Region l ,  where the R2 values were tions. 

virtually identical. 

2.  Many of the variables used in the original study are no longer statistically 

significant in the models. The only models with all of the original study 

variables statistically significant were the 2- and 10-year models in Region 

3, and the lo-, 50-, and 100-year models in Region 4. All other models had 

at least one variable that was not significant, and many had two variables 

that were no longer significant. 

These results show that the new regression equations are, statistically speaking, an 

improvement over the Beckman equations. 

LIMITATIONS OF REGRESSION EQUATIONS 

The regression equations were developed using records for uncontrolled streams. 

Therefore, these equations are not valid for controlled streams. Also, the drainage areas 

have limits in each region as shown in Table 5.3. Figure 5.12 shows the number of gages 

in each region falling within different drainage area ranges. 
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Table 5.3 Limitations of new equations 

Region Minimum Area (mi.*) 

1 0.4 

Maximum Area (mi.2) 

3300 

6430 

1590 

2 

3 
I 

4 630 

I I -- 

Figure 5.12. Fu’umber of gages in each region according to size of drainage area. 
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Chapter 6 

COMPARISON WITH NDOR METHODS 

The following section compares peak discharges resulting from current NDOR 

methods to peak discharges obtained by the new regression equations. Three randomly 

selected watersheds in each of the five hydrologic regions were used in the regression 

analysis. The appropriate Roadway Design Division or Bridge Division methods for the 

selected basins were used. The LP3 method was also used, since stream gage data were 

available for the selected basins. The results of these comparisons are discussed in the next 

two sections. 

Tables 6.1 and 6.2 show the gages used and the results of the peak discharge 

estimates using the various methods. Table 6.1 is for drainage areas that would probably 

result in culvert design, and Table 6 .2  shows drainage areas that would probably result in 

bridge design. Estimates were made for the lo-, 50-, and 100-year return periods. Any 

blank value in the table means that the method was not applicable to that basin due to some 

constraint, such as an oversized drainage area. 

ROADWAY DESIGN DIVISION METHODS 

Figures 6.1 through 6.3 show bar graphs comparing the estimated peak discharges 

using the Potter, Rational, LP3, and new regression equation methods. To evaluate the 

results, it is necessary to have a "true" value for the comparison. Using the LP3 value as 

the hue" value, several observations can be made. 

First, the new regression equations are best, in general, at predicting the LP3 value. 

This is to be expected since the regression equations are based on the LP3 values. The 

Ratioinal Method performed well for the longer return periods. For some of the sites, the 

disparity between LP3 values and estimates from Roadway Design Division methods was, 100 

perceint or more. However, these differences were not always in the same direction. In 

other words, the LP3 and regression equations did not predict consistently higher or lower 

than the other two methods. This finding was true for each of the three return periods 

examined. 
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BRIDGE DIVISION METHODS 

The comparison of the new regression equations to methods used in the Bridge 

Division was carried out in the same way as for the Roadway Design Division. Figures 6.4 

through 6.6 compare estimates made using LP3, Circular 458, the Beckman regression 

equations, WSP 1679 or 1680 (depending on location), and the new regression equations. 

(Refer to Chapter 2 for an overview of these methods.) Figures 6.4 through 6.6 also 

compare the estimates for lo-, 50-, and 100-year return periods. (The 10-year return period 

does not show the estimates from WSP 1679 or 1680 because they do not provide for the 

prediction of a 10-year return period.) 

The following general observations can be made about these comparisons. The new 

regression equations generally are closer to the LP3 estimates than are the results of the 

other methods, In some instances, however, the Beckman equations are closer. The degree: 

of v,ariability between all of the methods is generally not as high as it is for the methods used 

by the Roadway Design Division. There are only a few instances of differences over 100 

percent between any two methods at the same site. The greater agreement between methods 

used by the Bridge Division, as compared to methods used by Roadway Design, may be due 

to the basis of the former on actual flow data. However, not all Bridge Division methods 

were based on an LP3 distribution. 

No one method consistently predicts higher or lower than the other methods, but the 

Potter Method tends to predict outside the range of the other methods. This occurs in both 

the Roadway Design and Bridge calculations. It predicts peaks up to 400 percent different 

than the LP3 method, and it also performs the worst in each return period. The Circular 458 

method also predicts poorly. Figure 6.7 shows the average percentage difference from LP3 

for the methods used in both NDOR Divisions. 
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COMPARISON OF NEW REGRESSION EQUATIONS TO BECKMAN EQUATIONS 

This section compares the new regression equations to those developed by Beckman. 

These comparisons are based on all of the gage sites used to update the regression equations. 

Among the comparisons performed on the two sets of equations are tests of the sample 

variances. The sample variance, which is estimated by the mean-square error (MSE), was 

obtained for each equation by finding the residuals between the observed "true" event (LP3) 

and the predicted event from each equation. The residuals were then squared and summed. 

The summation was then divided by the degrees of freedom, which is the number of gages 

in the region minus the number of estimated parameters. There are four estimated parame- 

ters for all of the Beckman equations and for regions 2 through 5 for the new equations. 

Region 1 (new equations) has three estimated parameters, since only two basin characteristics 

are used. 

McCuen (1993) points out that the regression equations minimize the sum of squares 

error for the logarithms of the peak flows, but not for the peak flows themselves. This is 

shown in Table 6.3, where the MSE of logarithms for each of the equations is shown, as 

well as the root of MSE for the actual, non-transformed peak flows. Although the log MSE 

values are all smaller for each of the new equations, the root MSE of the non-transformed 

variables is not. McCuen states that a power equation must be developed to minimize the 

sum of squares error for the non-transformed variables,. However, power equations are 

quite complex, and in the literature review, all regional regression equation development 

procedures utilized the logarithmic transformation (Choquette, 1987; Harris e? al.,  1979; 

Parret, 1981; Schroeder, 1977; and Bridges, 1982). 

Table 6.3 shows the median value of the computed differences between the LP3 

values, those of the new regression equations, and those of the Beckman equations. Figures 

6.9 through 6.13 show box plots of the percentage differences. The top line in the box plot 

shows the maximum percent difference between the predicted value and the LP3 ,value in the 

positive direction. The top of the box shows the point that exceeds 75 percent of the values 

in that region, and the bottom line of the box shows the point that exceeds 25 percent of the 

70 



, 

values in the region. Therefore ~ h c  iiiiddle half of the values fall within the box.  The line 

inside or near the box represents the inean value. 

Table 6.3 Comparison of niean square error (MSE) for each equation. 

NEWEQ BECKMAN MEDIAN BECKMAN 
RMSOF MSEOF XDlFF RMSOF 

NEW ria PEAK Q'S LOGS BECKMAN PEAK Q'S 

070 I 0.28 I 0.91 I 2300 I 0.32 I 1  I 1.87 I 1.45 I 2600 1 2.02 
6.24 I 1.83 I 19.00 I 6.48 

Maxlmum Poaltlve Change 1 

75% 01 Values are Below 

Mean Change 

Medlan Change 

25% 01 Values are Below 

Mean Change 

Medlan Change 

25% 01 Values are Below 

2 Maxlrnurn Negatlve Change 

Figure 6.8. Legend for box plots, Figures 6.9 through 6.13. 

The bottom line represents the maximum percent difference in the negative direction 

between the predicted value and the LP3 value. The line on the outside of the box 
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shows the position of the median value. Figure 6.8 displays graphically the legends used in 

Figures 6.9 through 6.13. 

From the MSE and graphical comparisons, one can see that the new equations more 

accurately predict the LP3 values. In every region except Region 2, the range of values 

from the box plots is smaller for the new equations than for the old equations. The 

computed MSE values in Table 6.3 indicate that Region 2 also has less sample variance than 

with Beckman’s equations. 

RETURN PERIOD (YE) 

Figure 6.9. Box plot of differences between Beckman’s and the new equations for 
Region 1. 
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Figure 6.10. Box plot of differences between Beckman’s and the new equations for 
Region 2. 
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Figure 6.11. Box plot of differences between Beckman’s and the new equations for 
Region 3. 
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BECKMAN DATA ON LEFT 

NEW DATA ON RIGHT 
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Figure 6.12. Box plot of differences between Beckman's and the new equations for 
Region 4. 

-" I REGION 5 26 GAGES 

I BECKMAN DATA ON LEFT I I 

2 10 50 100 
RETURN PERIOD (yrs) 

Figure 6.13. Box plot of differences between Beckman's and the new equations for 
Region 5.  
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

The two goals of this study were to make available the most recent methods in 

hydrologic design, and, if possible, to recommend a uniform design procedure for the two 

NDOR Divisions. The first section of this chapter presents the conclusions based on this 

research project. The second section presents recommendations for updating the hydrology 

section of the Roadway Design Division manual. These recommendations are hased on this 

research, as well as the previous research performed by Riley (1988) and McCallum (1592). 

Also, some recommendations for further study are included. 

CONCLUSIONS 

With regard to the objectives of this research, the following conclusions can be 

drawn: 

1. The new regression equations reflect the most recent methods in design. This is 

not only because they are newly developed, but also because of the way they were 

developed. The LP3 stream flow data analysis uses more data than was available 

when the previous regression equations were developed. Also, improved statistical 

methods, especially with regard to the generalized skew map, were used to develop 

the new equations. 

2. When stream flow records of sufficient length are available at a site, LP3 analysis 

should be performed. The generalized skew map presented in this paper shows 

greater detail, partially because of 25 years of stream flow records as opposed to 

10 years of record for the Bulletin 17B map. 

3. When the LP3 estimates of peak flow are assumed to be the “true” values, the new 

regression equations estimate values closest to these. Based on this assumption, the 

other methods currently used are not as accurate as the new regression equations. 

4. The greatest average differences from the LP3 value were from the Potter Method, 

for all return periods analyzed. 
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RECOMMENDATIONS 

The following recommendations are based upon the results of all three studies that 

made up this NDOR project. 

1. When gage records are available at or near a site, use LP3 in conjunction with the 

generalized skew map presented in this paper. 

2.  Both the Roadway Design and Bridge Divisions should use the new regression 

equations to calculate peak flows. 

3. Continue to use the Rational Method for all drainage areas under 0.4 square miles. 

It should also be used for areas under two square miles as recommended by 

McCallum (1992) in Region 2, and for areas under one square mile in Region 5. 

These limits are necessary because no gages from drainage areas smaller than this 

were used to develop the regression equations. The current NDOR nomograph 

should be used to compute the time-of-concentration for the Rational Method. A 

factor of 1.5 should be applied to the time-of-concentration for agric:ultural 

watersheds. 

4. Replace the current IDF curves with the IDF curves presented by Riley. The Riley 

curves allow for longer storm durations. 

5 .  Stop using the Potter Method because of its poor estimation of peak flows with 

respect to LP3, and also because it is not valid for much of the state (Sandhills 

region). 

6. Further research should be conducted to investigate the need to update regional 

boundaries used for the regression equations. This may result in better regression 

equations. 

7 .  Further research may be of value to see the effects of using different flow frequency 

distributions. Specifically, the Wakeby Distribution, which has proven effective in 

simulation studies, may be a legitimate alternative to the LP3 method. 
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